Compounds Containing Layers of Composition [(SblilF)XO ${ }^{117}$] $X=P$, As). Crystal Structures of $\mathrm{Na}\left(\mathrm{SbF}^{2}\right) \mathrm{PO}_{4} \cdot \mathbf{1 . 5 H}_{2} \mathrm{O}, \mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$, $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

KLAUS HOLZ, FRANK OBST, and RAINER MATTES*
Anorganisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 8, D-4400 Münster, F.R.G.

Received June 22, 1990

Abstract

The title compounds have been prepared in water by reaction of SbF_{3} with dihydrogen phosphates or arsenates and characterized by single crystal X-ray work, IR, Raman, and Mössbauer spectroscopy. They have identical layer structures. Layers of composition $\left[(\mathrm{SbF}) X \mathrm{O}_{4}\right]-(X=\mathrm{P}$, As) were formed by sharing four corners between XO_{4} tetrahedra and SbFO_{4} pseudooctahedra. The lengths of the terminal $\mathrm{Sb}-\mathrm{F}$ bond (with the lone pair in a trans-position) and the $\mathrm{Sb}-\mathrm{O}$ bonds are 192 and 219 pm , respectively. The stacking of the layers and the interlayer distance depend on the cations and the number of intercalated water molecules. In $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ the Na^{+}ion is coordinated by only two oxygen atoms within 300 pm. Crystal data: $\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / m, a=656.2(5), b=654.1(5), c=$ $867.9(3) \mathrm{pm}, \beta=92.43(1)^{\circ}, 889$ reflections, 81 parameters, $R=0.044, R_{w}=0.046 . \mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, tetragonal, $I 4 / m, a=656.6(3), c=1439.8(5) \mathrm{pm}, 680$ reflections, 31 parameters, $R=0.023, R_{w}=$ $0.021 . \mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$, tetragonal, $\mathrm{P} 4 / \mathrm{ncc}, a=671.8(1), c=1756.4(4) \mathrm{pm}, 1056$ reflections, 28 parameters, $R=0.052, R_{w}=0.065 . \mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, tetragonal, $P 4 / n c c, a=683.8(2), c=1873.0(7)$ $\mathrm{pm}, 1194$ reflections, 30 parameters, $R=0.042, R_{w}=0.050$. © 1991 Academic Press, Inc.

Introduction

SbF_{3} is a strong Lewis acid and forms addition compounds with many metal fluorides, sulfates, and nitrates. Their structures have been intensively discussed with respect to the stereochemical activity of the lone pair of $\mathrm{Sb}(\mathrm{III})(1-6)$. In reactions with hydrogen and dihydrogen phosphates compounds with the formula $M^{1}\left(\mathrm{SbF}_{2}\right) \mathrm{HPO}_{4}$, or $M^{1}(\mathrm{SbF}) \mathrm{PO}_{4}\left(M^{I}=\mathrm{Na}, \mathrm{K}, \quad \mathrm{NH}_{4}\right)$ are formed, depending on the reaction conditions. Reactions with hydrogen and dihydrogen arsenates yield similar products. The compounds $M^{\mathrm{I}}\left(\mathrm{SbF}_{2}\right) \mathrm{HXO}_{4}$ with $X=$

[^0]P, As and $M^{\mathrm{I}}=\mathrm{K}, \mathrm{NH}_{4}$ show complicated layer structures with pentacoordinated Sb (III) atoms (4,5). In this paper we report the closely related structures of a series of compounds containing the hitherto unknown SbF^{2+} unit. A short communication of part of this work has already been published (6).

Experimental

Preparation of the Compounds

All preparations were performed in PVC or Teflon vessels.

The following instruments were used in this work: IR, Perkin-Elmer 457 infrared spectrometer and Bruker IFS 113 FTIR-
spectrometer; Raman spectra, Coderg T-800 spectrometer, Ar^{+}laser (514.5 nm); X-ray crystallography, Syntex P_{1} or Siemens $R 3 \mathrm{~m} / V$ diffractometer (MoK_{α} radiation, $\lambda=0.71073 \AA$; graphite monochromator).
$\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}(\mathrm{SbF})$ $\mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. To a stirred saturated aqueous solution of SbF_{3} was added a concentrated solution of $M^{1} \mathrm{H}_{2} \mathrm{PO}_{4}\left(M^{1}=\mathrm{Na}, \mathrm{NH}_{4}\right)$ in the molar ratio $1: 2$. The solution was warmed up to $40-50^{\circ} \mathrm{C}$ and the precipitate immediately formed was filtered off. After cooling to room temperature the products crystallized as very thin plates. Larger crystals for structural work were obtained within 2 days.
$\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$. To a stirred saturated solution of SbF_{3} was added a saturated solution of $\mathrm{Na}_{2} \mathrm{HAsO}_{4}$ in the molar ratio 1:1. After heating up to $60^{\circ} \mathrm{C}$ for $1-2 \mathrm{~min}$ the precipitate formed was filtered off. The product crystallizes within 3-4 hr from the filtrate.
$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. To a $6 \mathrm{M} \mathrm{SbF}_{3}$ solution was added a $3 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HAsO}_{4}$ solution. A microcrystalline product precipitated. It changed within a few hours to small platelet like crystals. Crystals of Xray quality were obtained by recrystallization in a temperature gradient (7), using mother liquor as solvent.
$\mathrm{Ag}(\mathrm{SbF}) \mathrm{PO}_{4}$. Freshly precipitated $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ was dissolved as $\mathrm{AgH}_{2} \mathrm{PO}_{4}$ in the stoichometric amount of $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$. To this solution was added a saturated solution of SbF_{3} in the molar ratio 1:1. Within several hours $\mathrm{Ag}(\mathrm{SbF}) \mathrm{PO}_{4}$ crystallized from the viscous solution as microcrystalline product.

Analyses. Sb was analyzed volumetrically with $\mathrm{BrO}_{3}^{-}, \mathrm{P}$, or As as 12-molybdatophosphate(arsenate), F potentiometrically by using an ion-sensitive electrode (Orion Model 407 ion analyser), N with the Kjeldahl method, and Na by flame photom-
etry. All compounds gave satisfactory elemental analyses.

Structural Determinations

Crystal data and details of data collection are summarized in Table I. Crystal quality, unit cells, and systematic extinctions were checked by using rotation and Weissenberg photography. An improved empirical absorption correction (fitting of azimuthal data to a thin plate, program XEMP of SHELXTL) was applied to all data sets but $\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, where only the usual empirical correction was applied. No variations were observed for the intensity check reflections. The structures were solved by Patterson methods and refined by standard least squares methods by using the SHELXTL and SHELXTL PLUS program systems. Nonhydrogen atoms were refined with anisotropic thermal parameters; for $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ hydrogen atoms were located in difference maps and refined isotropically. The weighting scheme $w^{-1}=\sigma$ $\left(F_{0}\right)+\left(g \cdot F_{0}\right)^{2}$ was used throughout (for g see Table I). In two cases an extinction parameter x was refined $\left(F^{\prime}=F_{\mathrm{c}} / 1.0+0.002\right.$. $\left.x \cdot F_{\mathrm{c}}^{2} / \sin 2 \theta\right) 0.25$. Tables II and III contain the final parameters. Some special features of the structure solutions are outlined below.
$\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$. Refinement in space group $P 2_{\text {, }}$ yielded $R=0.046$, but the tetrahedral PO_{4}^{3-} group was unreasonably distorted with OPO angles ranging from 89 to 136°. A disordered structure model was then chosen with Sb and P on the mirror plane of space group $P 2_{1} / m$ and the remaining atoms half-filling the general positions. The refinement converged rapidly to $R=$ 0.044 .
$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. Refinement in space group $I \overline{4}$ was tried first, yielding $R=$ 0.025 with 46 parameters; but many parameters were strongly correlated. The correct space group was found to be $14 / \mathrm{m}$.

TABLE I
Crystal Data and Data Collection

	$\mathrm{Na}\left[\mathrm{SbF}^{\text {a }} \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right.$ Monoclinic	$\underset{\text { Tetragonal }}{\mathrm{NH}_{4}[\mathrm{SbF}] \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}}$	$\xrightarrow[\text { Tetragonal }]{\text { Na }}$	$\mathrm{NH}_{4}\left[\mathrm{SbFlAsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$ Tetragonal
Lattice type	Monoclinic $P 2_{1} / m$	Tetragonal	P4/ncc	P4/ncc
$a(\mathrm{pm})$	656.2(5)	656.6(3)	671.8(1)	683.8(2)
$b(\mathrm{pm})$	654.1(5)			
$c(\mathrm{pm})$	867.9(3)	1439.8(5)	1756.4(4)	1873.0(7)
β (deg)	92.43(1)			
$V\left(\mathrm{pm}^{3} 10^{6}\right)$	372.2	620.7	792.7	876.3
X	2	4	4	4
$d_{\text {chs. }}\left(d_{\text {cal }}\right)\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	(2.55)	2.87(2.91)	2.48 (2.54)	2.66(2.67)
Crystal dimensions, (mm)	$0.40 \cdot 0.30 \cdot 0.15$	$0.35 \cdot 0.35 \cdot 0.10$	$0.38 \cdot 0.36 \cdot 0.05$	$0.40 \cdot 0.40 \cdot 0.13$
Abs.coeff. $\left(\mathrm{Mo} K_{\alpha}\right)\left(\mathrm{mm}^{-1}\right)$	4.02	4.71	7.64	6.92
Temperature (K)	298	298	200	140
Scan type	$\theta / 2 \theta$			
Range, 2 θ (deg)	4-54	4-54	4-54	4-54
Data collected	965(+ h, $+k,+l)$	$680(+h,+k,+l)$	1056(+ h, $+k,+l$)	1194($+h,+k,+1)$
Unique data	959	354	443	475
$R_{\text {int }}$.	-	0.042	0.072	0.050
Observed data ($1>2 \sigma(I)$)	889	343	380	434
No. of variables	81	31	28	30
g in weighting scheme	0.02	0.014	0.02	0.016
Extinction parameter	-	-	$0.0008(3)$	0.0031(4)
$R\left(R_{w}\right)$	0.044(0.046)	0.023(0.021)	0.052(0.065)	0.042(0.050)
Residual electron density in final map(e $\cdot \mathrm{pm}^{-3} \times$ 10^{-6})	3.8; - 2.0	0.6;-1.5	2.4;-1.0	1.4;-2.0

TABLE II
Atomic Parameters of $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (First Line),
$\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ (Second Line) and $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(Third Line)

Ntom	Site	$x \times 10^{4}$	$y \times 10^{4}$	$z \times 10^{4}$	$U_{\text {iq }} \times 10^{3}$
Sb	4 e	0000	0000	$7782.9(3)$	$118(1)$
	4 c	2500	2500	$0307.3(6)$	$131(4)$
	4 c	2500	2500	$0297.1(3)$	$92(2)$
P / As	4 d	0000	5000	2500	$127(4)$
	4 b	7500	2500	0000	$140(5)$
	4 b	7500	2500	0000	$87(3)$
F	4 e	0000	0000	$9119(3)$	$186(9)$
	4 c	2500	2500	$1406(6)$	$192(22)$
	4 c	2500	2500	$1325(3)$	$150(13)$
O	16 i	$1809(4)$	$4430(4)$	$3128(2)$	$190(7)$
	16 g	$1838(10)$	$-0603(9)$	$0571(3)$	$193(16)$
	16 g	$1986(5)$	$-0591(5)$	$0542(2)$	$145(8)$
$\mathrm{Na} / \mathrm{N} / \mathrm{O}$	16 i	$6469(9)$	$7746(9)$	0000	$363(16)$
	$16 \mathrm{~g}^{a}$	$6100(60)$	$0335(41)$	$1854(6)$	$908(123)$
	16 g	$6357(6)$	$0151(5)$	$1825(2)$	$291(12)$

[^1]TABLE III
Atomic Parameters of $\mathrm{Na}[\mathrm{SbF}] \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$

	$x \times 10^{4}$	$y \times 10^{4}$	$z \times 10^{4}$	$U_{\mathrm{cq}} \times 10^{2}$
Sb	$2573(1)$	2500	$518(1)$	$7(1)$
P	$2454(3)$	7500	$0(3)$	$8(1)$
$\mathrm{O}(1)$	$5824(11)$	$3149(12)$	$1071(9)$	$14(2)$
$\mathrm{O}(2)$	$9419(10)$	$3096(11)$	$1032(8)$	$11(2)$
$\mathrm{O}(3)$	$8057(15)$	$666(11)$	$8944(9)$	$12(2)$
$\mathrm{O}(4)$	$6861(13)$	$766(12)$	$8928(8)$	$10(2)$
F	$2741(6)$	2500	$2748(5)$	$8(28)$
$\mathrm{O}(5)$	$8909(12)$	$5386(14)$	$3636(7)$	$71(3)$
$\mathrm{O}(6)$	$4869(16)$	$7122(63)$	$3892(10)$	$52(12)$
Na	$5842(9)$	$4191(11)$	$3633(6)$	$36(2)$

Note. Equivalent isotropic U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.
$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}(\mathrm{SbF})-$ AsO_{4}. These crystallize in space group $\mathrm{P} 4 /$ ncc. In the former compound four NH_{4}^{+} ions and twelve $\mathrm{H}_{2} \mathrm{O}$ molecules occupy together a sixteenfold site (16 g); in the latter compound $4 \mathrm{Na}^{+}$ions are statistically distributed over this site.

Results and Discussion

All four compounds crystallize in highly symmetrical and, considering the individual layers, identical structures. In three dimensions the structures differ in the stacking of the layers and/or in the interlayer distances. One layer consists of a net of cor-ner-shared : SbFO_{4} pseudooctahedra and $X \mathrm{O}_{4}(X=\mathrm{P}, \mathrm{As})$ tetrahedra (see Fig. 1) with the oxygen atoms of the XO_{4}^{3-} ions connected to four different SbF^{2+} units. So puckered layers of tetragonal symmetry are formed, in which the $\mathrm{Sb}-\mathrm{F}$ bonds show alternatively up and down. The lone pair at Sb (III) is stereochemically active and in a trans-position to the $\mathrm{Sb}-\mathrm{F}$ bond. Similar structures are formed by $\mathrm{VOPO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NbOPO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, which gained recent interest as host compounds in intercalation reactions (8). $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ and $\mathrm{NH}_{4}(\mathrm{Sb}-$
F) $\mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ are isotypic and crystallize in the tetragonal space group $P 4 / n c c$.
$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, space group $14 / m$, forms a body-centered structure. $\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ crystallizes monoclinic in a disordered structure. The identity periods within the layers are between 656 and 684 pm for all four compounds. In the c direction, the identity periods depend on the cations involved and the mode of stacking.

Tables IV and V list some relevant bond distances and angles in these structures. As can be seen, the individual bond distances vary little. The single $\mathrm{Sb}-\mathrm{F}$ distance, in the range $192-193 \mathrm{pm}$, is rather short and close to the (mean) $\mathrm{Sb}-\mathrm{F}$ distance in SbF_{3} (192 pm) (9). The mean $\mathrm{Sb}-\mathrm{O}$ distance is 219 pm and again comparatively short. Besides the five primary bonds no secondary interactions can occur due to the unique structure. The bond strength of the dative $\mathrm{Sb}-\mathrm{O}$ bonds approaches the strength of $\mathrm{Sb}-\mathrm{O}$ single bonds, because the SbF^{2+} group acts as a very strong Lewis acid. The SbFO_{4} poly-

Fig. 1. Top view of a layer consisting of cornerlinked SbFO_{4} pseudooctahedra and XO_{4} tetrahedra.

TABLE IV
Selected Bond Distances (pm) and Angles (deg)

	$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$	$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	
Sb-F	192.4(5)	193.0(10)	192.5(6)	
Sb-O	218.5(3)	218.1(6)	219.2(3)	
$X-\mathrm{O}$	153.9(3)	168.2(6)	169.1(3)	
$\mathrm{Na}-\mathrm{O}$	-	249.2(16)	-	
$\mathrm{Na}-\mathrm{F}$	-	293.0(36)	-	
N/O . . O	292.2(4)	--	276.2(5)	
N/O . . . N/O	289.3(5)	-	276.2(5)	
			278.4(7)	
			279.3(5)	
$\mathrm{O}-X-\mathrm{O}$	108.0(2)	106.8(4)	106.2(2)	$2 \times$
$\mathrm{F}-\mathrm{Sb}-\mathrm{O}$	110.2(1)	110.8(2)	111.1(1)	$4 \times$
	76.9(1)	77.7(1)	77.9(1)	
$\mathrm{O}-\mathrm{Sb}-\mathrm{O}$	87.0(0)	87.4(1)	87.5(0)	$4 \times$
	153.7(2)	155.5(3)	155.9(2)	$2 \times$
$X-\mathrm{O}-\mathrm{Sb}$	124.4(2)	122.9(3)	125.9(2)	

hedra are distorted due to the stereochemical activity of the lone pair. All bonds are on the same side of the central atom (see Fig. 2). The $\mathrm{F}-\mathrm{Sb}-\mathrm{O}$ angles are in the range $77-78^{\circ}$, the $\mathrm{O}-\mathrm{Sb}-\mathrm{O}$ angles of adjacent bonds in the range $87-88^{\circ}$. The PO_{4}^{3-} and AsO_{4}^{3-} tetrahedra are slightly distorted. The $\mathrm{P}-\mathrm{O}$ bond length is intermediate between the terminal (150 pm) and the bridging (161 $\mathrm{pm}) \mathrm{P}-\mathrm{O}$ distances in the $\mathrm{P}_{3} \mathrm{O}_{10}^{5-}$ ion (10).

The individual features of the compounds

TABLE V
Bond Distances (pm) and Bond Angles in $\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Sb}-\mathrm{O}(1)$	$220.8(7)$	$\mathrm{P}-\mathrm{O}(1)$	$155.2(8)$
$\mathrm{Sb}-\mathrm{O}(2)$	$217.1(7)$	$\mathrm{P}-\mathrm{O}(2)$	$154.0(7)$
$\mathrm{Sb}-\mathrm{O}(3)$	$216.6(8)$	$\mathrm{P}-\mathrm{O}(3)$	$155.5(8)$
$\mathrm{Sb}-\mathrm{O}(4)$	$221.8(8)$	$\mathrm{P}-\mathrm{O}(4)$	$152.3(8)$
$\mathrm{Sb}-\mathrm{F}$	$193.4(4)$	$\mathrm{Na}-\mathrm{F}$	$241.3(7)$
$\mathrm{Na}-\mathrm{O}(1)$	$232.5(9)$	$\mathrm{Na}-\mathrm{O}(6)$	$203.6(40)$
$\mathrm{Na}-\mathrm{O}(5)$	$215.9(10)$		$237.8(18)$
		$250.8(41)$	
		$259.8(24)$	
$\mathrm{O}-\mathrm{P}-\mathrm{O}$	$106.2(4)-112.0(4)$, mean 109.5		
$\mathrm{~F}-\mathrm{Sb}-\mathrm{O}$	$76.6(2)-79.0(2)$		
$\mathrm{P}-\mathrm{O}-\mathrm{Sb}$	$122.6(4)-125.4(4)$, mean 123.8		

in this study can be described as follows: In $\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ the interlayer distance (876.9 pm) is identical with the c-axis length. The structure is disordered with respect to the layer sequence. Two types of layers, formally created by a mirror plane through Sb, P, and F are stacked along c in a statistical sequence, yielding the overall diffraction symmetry $P 2_{1} / m$. Due to the lack of strong periodicity all reflections along (001) are diffuse. The sodium ions and one third of the $\mathrm{H}_{2} \mathrm{O}$ molecules occupy half-filled fourfold positions. Na^{+}is surrounded within 260 pm by six oxygen atoms.

Fig. 2. Coordination of $\mathrm{Sb}(\mathrm{III})$.

Fig. 3. Projection of the structure of $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4}$ $3 \mathrm{H}_{2} \mathrm{O}$ along c. In $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4} \mathrm{~N} / \mathrm{O}$ sites are partially occupied by Na.

The two arsenates $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ and $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (see Figs. 3 and 4) are isostructural. Sb and F are situated on 4 -fold axes of the space group, As on a $\overline{4}$ site. In $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ four NH_{4}^{+} and twelve $\mathrm{H}_{2} \mathrm{O}$ molecules occupy together a 16 -fold general site. As an interesting feature of the structure, one NH_{4}^{+}ion and three $\mathrm{H}_{2} \mathrm{O}$ molecules form squares via hydrogen bonds; further hydrogen bonds connect these squares with four oxygen atoms in the layer above and with four other $\mathrm{NH}_{4}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ units below. So each N/O position is involved in four hydrogen bonds with N/O . . . N/O distances from 276 to $279 \mathrm{pm} ; 10$ hydrogen atoms are necessary to build un this framework, as much as are available.

In $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ for Na^{+}ions are distributed over a 16 -fold site. The coordination number of Na^{+}is very low. Within a distance of 300 pm only one fluorine (at 293 pm) and one oxygen atom (at 249 pm) are located. The Na^{+}ions are very probably highly mobile as indicated by the large anisotropy of the thermal parameters. So $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ is expected to be an ionic

Fig. 4. Projection of the structure of $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4}$ $3 \mathrm{H}_{2} \mathrm{O}$ along a. H-bonds within the $\mathrm{NH}_{4}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ units are shown as dashed lines. In $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ one quarter of the N/O sites is statistically occupied by Na.
conductor. Along c the layers are stacked with the Sb (and P) on top of each other, the $\mathrm{Sb}-\mathrm{F}$ vectors being in the same directions. The identity period is twice this distance, because neighboring layers differ in the positions of the bridging oxygen atoms. Due to the lack of hydrogen bonds, the layers in $\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$ are packed more densely and are slightly less expanded (see Table I).

A different stacking of the layers and also a different hydrogen bond network is ob-

Fig. 5. Projection of the structure of $\mathrm{NH}_{4}(\mathrm{SbF})$ $\mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ along c. Hydrogen bond network.
served for $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (see Fig. 5). Sb and P again occopy sites of symmetry 4 and $\overline{4}$, respectively. Due to the centering of the unit cell, the $\mathrm{Sb}-\mathrm{F}$ vectors in neighboring layers oppose each other directly, giving a very short nonbonding F . . . F distance of 253.6 pm . Four NH_{4}^{+}ions and four $\mathrm{H}_{2} \mathrm{O}$ molecules occupy together an eightfold site on the mirror plane of the space group. They form squares through hydrogen bonds. Further hydrogen bonds connect these squares up and down to oxygen atoms within the layers. Again each N/O position is involved in four hydrogen bonds with N/O . . . N/O distances from 289 to 292 pm . Twelve hydrogen atoms, as much as are available, are necessary for this network. In $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ the number of ions or molecules between the layers is one half the number in $\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4}$. $3 \mathrm{H}_{2} \mathrm{O}$. Consequently, the interlayer distance is much smaller in the former compound. Both structures are symmetry related. Their respective space groups, $I 4 / \mathrm{m}$ and $P 4 / n c c$, are subgroups of space group $I 4 / \mathrm{mcm}$. Driving force for the differentiation in individual structures may be the smaller overall volume of the PO_{4}^{3-} ion compared to the AsO_{4}^{3-} ion.

Infrared and Raman Spectra

The wavenumbers of the vibrational spectra in the range $1100-300 \mathrm{~cm}^{-1}$ are col-
lected in Table VI. The spectra look very similar due to the close structural relationship of the compounds. On the basis of the spectra of PO_{4}^{3-} and AsO_{4}^{3-} the assignment is straightforward. According to group theoretical considerations, one expects for $\nu_{1} X_{O_{4}}$ one Ra-active mode only, and for $\nu_{3} \mathrm{XO}_{4}$ two IR-active and two Ra-active modes. All modes but the second Raman mode of $\nu_{3} \mathrm{XO}_{4}$ are observed. This mode may be weak or accidently degenerate with $\nu_{1} X_{O_{4}}$. A band, observed for all compounds at $540-560 \mathrm{~cm}^{-1}$, is assigned to $\nu \mathrm{Sb}-\mathrm{F}$; it is shifted to higher energy by approximately $60 \mathrm{~cm}^{-1}$ compared to SbF_{3}. The remaining bands have to be assigned to deformation frequencies of the X_{0} groups and $\mathrm{Sb}-\mathrm{O}$ stretching vibrations.

Mössbauer Spectra

Table VIl contains the Mössbauer parameters of the compounds under discussion and of some related compounds. The observed values are correlated with the Sb (III) coordination (11), the presence of hydrogen bonds (12), and the electronegativity of the ligands (13). The highest isomer shifts are observed for compounds with symmetrical $A X_{5} E$ coordination. This enables a stronger participation of the s obital of Sb (III) in the bonding (14), with a maximum in $\mathrm{K}_{2} \mathrm{SbF}_{5}$ due to the number of most electronegative ligands. A second factor for

TABLE VI
Vibrational Spectra

$\mathrm{Na}[\mathrm{SbF}] \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$		$\mathrm{NH}_{4}[\mathrm{SbF}] \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$		$\mathrm{Ag}[\mathrm{SbF}] \mathrm{PO}_{4}$		$\mathrm{Na}[\mathrm{SbF}] \mathrm{AsO}_{4}$		$\mathrm{NH}_{4}[\mathrm{SbF}] \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$		
IR	Ra	IR	Ra	IR	Ra	IR	Ra	1R	Ra	
1060 s , sh		$1050 \mathrm{~s}, \mathrm{sh}$		1063 s		859 s,sh		860 s		$\nu_{3} \mathrm{XO}_{4}$
1008 vs	1004 vs	1008 vs	1008 vs	988 vs	1011 vs	815 vs	812 vs	807 vs	814 vs	$\nu_{3} \mathrm{XO}_{4}$
	958 s		955 vs		955 vs		840 vs		848 vs	$\nu_{1} \mathrm{XO}_{4}$
645 נ1	640 w	646 m	$605 \% 5$		647 m		445 w		445 w	$v_{4} \mathrm{XO}_{4}$
555 s	540 vs	552 s	560 m		5455	552 s	540 s	565 m	560 m	$\nu \mathrm{Sb}$-F
450 m	480 w	450 w	489 s		450 w	375 vs	390 w	385 s	384 w	$\nu_{2}, v_{4} \times \mathrm{O}_{4}$
	420 w		410 w		420 w	325 w		325 w		$v \mathrm{Sb}-\mathrm{O}$

TABLE VII
Mössbauer Parameters

Compound	$\delta(\mathrm{mm} / \mathrm{sec})$	$\mathrm{eQV} \mathrm{V}_{z z}(\mathrm{~mm} / \mathrm{sec})$	Sb-coordination	Refs.
$\mathrm{Na}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	-5.8	14.4	$\mathrm{AX}_{5} \mathrm{E}$	This work
$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	-4.9	18.0 (?)	$\mathrm{AX}_{5} \mathrm{E}$	This work
$\mathrm{Na}(\mathrm{SbF}) \mathrm{AsO}_{4}$	-4.5	14.4	$\mathrm{AX}_{5} \mathrm{E}$	This work
$\mathrm{NH}_{4}(\mathrm{SbF}) \mathrm{AsO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	-5.1	16.0	$\mathrm{AX}_{5} \mathrm{E}$	This work
$\mathrm{K}\left(\mathrm{SbF}_{2}\right) \mathrm{HPO}_{4}$	-5.2	18.4	$\mathrm{AX}_{5} \mathrm{E}$ distorted	(15)
$\mathrm{K}\left(\mathrm{SbF}_{2}\right) \mathrm{HAsO}_{4}$	-5.8	15.8	$\mathrm{AX}_{5} \mathrm{E}$ distorted	(15)
$\mathrm{NH}_{4}\left(\mathrm{SbF}_{2}\right) \mathrm{HAsO}_{4}$	-5.3	17.7	$\mathrm{AX}_{5} \mathrm{E}$ distorted	(15)
$\mathrm{K}_{2} \mathrm{SbF}_{5}$	-4.1	14.3	$\mathrm{AX}_{5} \mathrm{E}$	(16)
SbF_{3}	-6.3	19.1	$\mathrm{AX}_{6} \mathrm{E}$	(16)

this observation is the increased shielding of the s electrons from the nuclear charge by the presence of at least four primary bonds. Hydrogen bonds generally induce larger isomer shifts (12). The quadruple coupling constant depends on the homogeneity of the ligand field at the nucleus. Therefore, this value is generally larger in compounds with SbF^{2+} groups than in compounds with a more symmetrical coordination of Sb . Hydrogen bonds tend to increase this value as well.

References

1. A. A. Udovenko, L. M. Volkova, R. L. Davidovich, and L. A. Zemnukhova, Koord. Khim. 5, 704, 1706 (1979).
2. M. Bourgault, B. Ducourant, B. Bonnet, and R. Fourcade, J. Solid State Chem. 36, 183 (1981); M. Bourgault, B. Ducourant, D. Mas-cherpa-Corral, and R. Fourcade, J. Fluorine Chem. 17, 215 (1981). R. Fourcade, M. Bourgault, B. Bonnet, and B. Ducourant, J. Solid State Chem. 43, 81 (1982).
3. R. J. Gillespie, D. R. Slim, and J. E. Vekris, J. Chem. Soc. Dalton Trans., 971 (1977).
4. S. Hürter, R. Mattes, and D. Rühl, J. Solid State Chem. 46, 204 (1983).
5. K. Holz and R. Mattes, Z. Anorg. Allg. Chem. 578, 133 (1989).
6. R. Mattes and K. Holz, Angew. Chem. 95, 898 (1983); Angew. Chem. Int. Ed. Engl. 22 (1983) 872.
7. K.-Th. Wilke und J. Bohm, "Kristallzüchtung," p. 905, VEB Deutscher Verlag der Wissenschaften (1988).
8. K. Beneke und G. Lagaly, Inorg. Chem. 22, 1503 (1983); J. W. Johnson and A. J. Jacobson, Angew. Chem. 95, 422 (1983); Angew. Chem. Int. Ed. Engl. 22, 412 (1983).
9. A. J. Edwards, J. Chem. Soc. A, 275 (1970).
10. E. J. Griffith, Pure Appl. Chem. 44, 173 (1975).
11. M. Takeda, M. Takahashi, R. Ohyama, and I. Nakal, Hyperfine Interact 28, 741 (1986).
12. J. G. Ballard and T. Birchall, Canad. J. Chem. 52, 2375 (1974).
13. M. Grodzicki and A. X. Trautwein, Hyperfine Interact. 29, 1547 (1986).
14. T. Birchall, B. Ducourant, R. Fourcade, and G. Mascherpa, J. Chem. Soc. Dalton Trans., 2313 (1972).
15. K. Holz and R. Mattes, unpublished results
16. J. G. Ballard, T. Birchall, R. Fourcade, and G. Mascherpa, J. Chem. Soc. Dalton Trans., 2409 (1976).

[^0]: *To whom correspondence should be addressed.

[^1]: ${ }^{a}$ Site occupation factor 0.25 .

